If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+48X-9=0
a = 1; b = 48; c = -9;
Δ = b2-4ac
Δ = 482-4·1·(-9)
Δ = 2340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2340}=\sqrt{36*65}=\sqrt{36}*\sqrt{65}=6\sqrt{65}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-6\sqrt{65}}{2*1}=\frac{-48-6\sqrt{65}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+6\sqrt{65}}{2*1}=\frac{-48+6\sqrt{65}}{2} $
| (2x-3)^2+18=0 | | 2x-7=x+1;2x=x+8 | | 5x+4(5/6x-7/3)=-26 | | 6(x-2)-1=-3(-9x+9)-9x | | 8-y=232 | | -20n=320 | | -5w-6=-10+5 | | 5+2(x-5)=7x+32 | | -7=-3/4x | | 2.75y=8.25 | | -4/3u-9/5=-3/2 | | -7=3/4x | | (-3-1)+8x-24=6x+7-5x | | 50+62+53+80+x=180 | | -5(5-x)=-30 | | a+20=35 | | 3.75y-y=8.25 | | D-d+4d=8 | | 9v+1=10-v | | (x/2)+7=3x-8 | | 117+19g=-24(-10g-35) | | -20n=-320 | | 2(5+x)=6 | | 13m+m-9m+3m=8 | | (5-2x)*(3-6x)=0 | | 6π=-2πq | | -1/8x=-25 | | 17+19g=-24(-10g-35) | | 3z^2+19z+30=0 | | -15k=-240 | | (x^2)/4-x+0.75=0 | | 11a=66 |